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A class of d-dimensional reaction-diffusion models interpolating continuously between the
diffusion-coagulation and the diffusion-annihilation models is introduced. Exact relations among
the observables of different models are established. For the one-dimensional case, it is shown how
correlations in the initial state can lead to nonuniversal amplitudes for time-dependent particle

density.

PACS number(s): 05.20.Dd, 05.40.+j, 82.20.Mj

I. INTRODUCTION

In the recent years, reaction-diffusion problems have
stimulated a large body of work in many different di-
rections [1,2]. The simplest example is provided by the
annihilation process A+ A — 0, in which the A particles
diffuse and react by pairs on contact.

Usually such kinetic processes are described in terms
of macroscopic rate equations giving the time evolution
of the local averaged concentrations. One assumes that
the reaction is completely described in terms of the lo-
cal average densities, and that the reaction introduces no
correlations between the reacting species. This is remi-
niscent of a mean-field-like approximation in statistical
physics. However, an important aspect of the problem
is neglected, namely, the microscopic fluctuations, and it
is well known that these fluctuations play an important
role in low-dimensional systems [3-5].

Indeed, for the annihilation process A+A4 — 0, the rate
equation predicts that, in the long-time regime, the con-
centration of A will decrease in time as a ~ At~! while
a calculation taking into account the local microscopic
fluctuations in the particle density gives [6] a ~ At?,
with o = min(1, £), where d is the dimensionality of the
system. Moreover, for a Poissonian initial state, the am-
plitude A is a universal quantity, which is in particular
independent of the initial density of the particles. This
nonclassical power-law behavior is called anomalous ki-
netics.

Thus to give a correct description, it is crucial to work
within a formalism that is able to keep track of the
fluctuations. This is a difficult task, which is the rea-
son that, except for one-dimensional systems, exact an-
alytical results are scarce. Complex reaction-diffusion
systems are present in nature [7]. However, the study
of simple models, like the diffusion-coagulation process
(DC) A+ A — A, or the diffusion-annihilation one (DA)
A+ A — 0 provide a very useful testing ground for new
theoretical approaches.

Different methods have been explicitly developed for
the one-dimensional systems (see, for example, [1,8-15]).
In most of them, one maps the initial reaction-diffusion
problem onto a different model (quantum chain [1], ki-
netic Ising model [8], invasion process [10], etc.), which is
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exactly solvable. A different approach consists in finding
the “good observables” for which an exact equation of
motion can be derived and solved. For the DC model,
Doering and ben-Avraham [14] have shown that the sys-
tem was best analyzed in terms of the time-dependent
probability £(z,y,t) that the interval between y and z
is empty at time t. The particle density a(z,t) is simply
given by a(z,t) = —%5(w,y,t)|z=é. In the continuous
limit, £(z,y,t) obeys a simple diffusion equation that
can be solved analytically. However, Doering and ben-
Avraham were not able to find a similar quantity for the
DA model.

In arbitrary dimensions, it was soon recognized, based
on dynamical renormalization-group arguments [16,17],
that the DA and DC models belong to the same uni-
versality class. The power-law exponents describing the
decay of the particle densities are the same. However, for
the amplitude A, the situation turns out to be more sub-
tle. Whereas for the DC model this amplitude seems to
be strictly independent of the initial state, this is not the
case for the one-dimensional DA model. Indeed, as no-
ticed by Family and Amar [18], short-ranged initial cor-
relations can change the asymptotic amplitude in a con-
tinuous way. In their analysis, the DA model is mapped
onto a kinetic Ising model at zero temperature [8]. Ex-
plicit asymptotic results for the average domain size, av-
erage magnetization squared, and pair-correlation func-
tion are derived for arbitrary initial conditions. When
the initial magnetization is my = 0, the results for the
DA model with Poissonian initial conditions are repro-
duced. However, for mo # 0, the particle density has
a nontrivial dependence on the initial magnetization. A
nonzero value of my means for the DA model that there
are some correlations among the particles in the initial
state. What is the mechanism responsible for this de-
pendence and could a similar situation also occur in the
DC process for which there is no mapping onto a kinetic
Ising model?

To answer this question we shall, in this paper, revisit
the problem of universality in the DC and DA models.
The strategy is to study the field theory that can be
associated to a reaction-diffusion process, following the
method introduced by Doi [19] and revisited by Grass-
berger and Scheunert [20] and Peliti [21]. We shall con-
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sider a class of diffusion-coagulation-annihilation models
(called a models), allowing us to go continuously from
the DC process to the DA one.

The paper is organized as follows. In Sec. II, the
way to associate a field theory to a reaction-diffusion
process is briefly reviewed and the a models are intro-
duced. Within a functional integral formalism, different
d-dimensional a models are related one to the others. In
Sec. III, the one-dimensional DC model is revisited. It is
shown how the equation for the time-dependent probabil-
ity £(z,y,t) that an interval between y and z is empty at
time ¢ can be obtained within the field theoretical frame-
work. In Sec. IV, we introduce the quantity 7(*)(z, y,t),
which is the natural generalization for the o model of
E(z,y,t). Its equation of motion is derived and exactly
solved, leading to an exact expression for the asymptotic
behavior of the particle density. It is shown explicitly how
and when the amplitude universality can be violated. In
particular, it is proved that for an initial state in which
particles are pairwise correlated, the violation of the am-
plitude universality is only possible for the DA model.
Finally, possible extensions of this work are discussed.

II. FIELD-THEORETICAL APPROACH

For the sake of completeness and to set up the nota-
tions, we briefly sketch the main steps necessary to derive
J
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the field theory associated to a d-dimensional reaction-
diffusion process. We follow the method introduced by
Doi [19] and revisited by Grassberger and Scheunert [20]
and Peliti [21].

We start with a description of the system in terms
of the probabilities P,(z1,...,Z,;t) that a configura-

tion with n particles at points zi,...,z, is realized at
time ¢. As we are not interested in specifying which
particle is where, we choose P,(z1,...,Zn;t) to be a

symmetric function in the variables zi,...,z,. Note
that, as the particle number is not conserved, a state
of the system must be specified by the entire set ®(t) =
{Pn(t)}n=o,...,c0 With the normalization

Zl/dml---dzn P,(z1,...,zn;5t) = 1.
n!

The dynamics is defined by the master equation

O Py(z1,...,%n;t) = [HP]n(z1,...,Tn;t), (1)

where H is an operator acting on the set of the probabil-
ities [19,20].

Let us consider as an example the following DA pro-
cess. The A particles diffuse and annihilate each other
with a reaction rate V(|z—y|) depending on the distance.
The corresponding master equation reads

" 52
B¢ Py (z1,...,Tn;t) = Dza—zg—Pn(zl,...,mn;t)
=1 z
1 1
_5 Zv(lml - Ile)Pn($1, e ,.’Bn;t) + E /dydz V(ly - Zl)Pn+2(y,Z,:l:1,. .o ,:Dn;t), (2)
i#£j

where D is the diffusion constant.

We introduce a Fock space representation for the states
of the system. Space-valued annihilation () and cre-
ation 7(z) = 9¥T(z) operators are introduced. The vac-
uum state |0) is defined by

¥(2)[0) =0

and the annihilation and creation operators obey bosonic
commutation relations:

[W(z),m(y)] =é(z —y).
The state specified by the set ® = {P,}n=0,...,c0 reads

— 1
|¢>= E m/d.’rl---d:rn
n=0

XPp(x1,...,z,)7(21) - - - 7(2,)|0) (3)

and the statistical average (A) over the state ® of an
observable {A, (z1,...,%n)}n=0,.. 00 defined by

1
(A) = Za/.dml---dmn An(z1,. .., 20) Pp(z1,. .., Z0)
n

[
takes the form of a scalar product:

(4) = (l4]®),

where A is the corresponding operator of the Fock space,
such that (0| (z1) - 9¥(z,)A|®) = An(z1,...,Z,) and
(| is a projection state given by

(| = (0le/ %= ¥,
having the property (|w(z) = (|. In particular, the parti-
cle density is given by ¢(z) = (¥(z)) and the n-point cor-
relation functions by p(z1,...,2,) = (¥ (z1)...9¥(zs)).
The normalization of the state is expressed by the con-
dition (|®) = 1. A correlated state, characterized by the
p-point cumulants,

<¢($1) e ¢($p)>cum = 9(p) ((E]_, .

has the form

— 1
l(I)):exPLZE/dzl”'de 9oy (X1, -, Tp)
=1

X[m(z1) = 1] - [m(zp) - 1]] |0). (4)

» Tp)
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It can be shown that the master equation can be writ-
ten in the Schrddinger-like form:

7]
= 19() = H|2(1)). (%)

For our annihilation model, the non-Hermitian evolution
operator H is given by

H = Hy,+ H,,
with
Hy=D / dz 7(z) V2 (2) ©6)
and
H, = - / dzdz Va(|z = 2|)m(2)m () — p(2)w(2").
(7)

diffusion-
J

A second example is provided by the
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coagulation process. The interaction part of the evolu-
tion operator becomes

” H.= —/dzdz' Ve(lz — 2'|)[7(2)7(2") — 7 (2)|9(2)9 ().

(8)

If now both coagulation and annihilation reactions are
simultaneously allowed, one has

Hapo = Ho+ H. = —/dzdz' (Va + Vo)m(2)m(2')
—Ver(2) = Va9 (2)%(2'). 9)
Although not Hermitian, these evolution operators have

the property to preserve the normalization (|H = 0. The
evolution equation of an observable A is

o
= (4) = (AH) = (|4, H]). (10)

It can be shown [21] that the correlation functions may
be expressed in terms of functional integrals as

(W(@1,t1) -+ P(@nstn))s,p = /D¢Dzﬁ $(@1,t1) 9 (Tn, tn)e”* Fo[d(z, 0)]. (11)

The action S appearing in the measure e~°

is related to H as follows:

S, 4] = /dtdz B — /dt Hir = +1,9].

F, is a functional of the auxiliary field ¥ at t=0, and is related to the cumulants of the initial state by

Fo[d)—] = exp LZ I% /dml cedxy gy (21, .-, Ep; 0)P(zq) -+ ’(/_z(xp) . (12)

Let us now assume that V. is proportional to V,. This leads us to introduce a class of model (called the a models)
depending on a continuous real parameter a and defined by the following action:

Sy = /dtdz P (1/) - DV21/)) + /dtdzdz' V(|z = 2N (2)9(2') + ap(2)]9(2)9(2'). (13)

The simple coagulation and annihilation reactions cor-
respond, respectively, to @ = 1 and a = 2 and will be
labeled by the indices ¢ and a in the following. Thus the
a models (a € [1,2]) interpolate between the coagulation
process and the annihilation one.

We are now in the position to relate the dynamics of
different o models in a very simple way. Taking the co-
agulation case as reference, Eq. (13) gives

Sulib#] = 5. [ 2. av]
and, by simply rescaling the functions in the functional

integral, we get the following relations between correla-
tion functions:

[
(1/J(w1’ tl) ot ¢(wn7 tn))a,Fo

= (P(21,81) - P(@nstn)) psers (14)
where
F§Y?[§)] = Folag).

In particular this means that, if at ¢ = 0 we consider two
states |®4(0)) and |®.(0)) such that

([¥(21) -+ %(2n)|2a(0)) = a7 (|%(21) - - - ¥ (2n)|2c(0)),

for all n, then this relation is conserved for all times,
if |®4) evolves according to the dynamic of the o model
and |®.) according to the dynamic of the coagulation one.
Moreover, if a set of equations among correlation func-
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tions, or more generally among operators, is satisfied for
the coagulation case, then a similar set of relations exists
for the a model, providing that one rescales the fields
according to 9 — a1p. Note that similar relations have
been recently derived in a different context by Simon [15]
and Henkel, Orlandini, and Schiitz [22].

For the particular case @ = 2 and for homogeneous
Poissonian initial conditions for both |®.) and |®,), we
have the following relation between the concentrations:

cot) = 2ca(t)  VE>0, (15)

providing that initially c.(0) = 2¢,(0). This result has
been already derived by several authors (see, for exam-
ple, [11,12,15,22]). Moreover, the relation among the
actions S, and S, has been already used in previous
works [16,17] for Poissonian initial conditions. However,
our results are valid for all the & models and take care ex-
plicitly of arbitrary initial conditions. In addition, from
Eq. (14), we clearly see that quantities involving correla-
tion functions of the same order are simply related. But
more complicated quantities such as, for example, the
interparticle distribution function (which involves many
correlation functions of different order), are no longer
simply related. This may explain why the asymptotic
interparticle distribution function between DC and DA
models are qualitatively different [23]. This problem will
be investigated in details in a further publication [24].

III. THE ONE-DIMENSIONAL COAGULATION
MODEL REVISITED

Let us define £(z, y,t), the time-dependent probability
that the interval (y, z) is empty at time ¢. Our goal is to
rederive in the framework of the field theory the equation
of motion for £(z,y,t) obtained by Doering and ben-
Avraham [14]. This equation reads

OE(@,yt) _ (& &
SRR p (62:2 + 57 ) E@:2). (16)

First, we have to identify the Fock space operator corre-
sponding to the probability £(z,y,t). This means that
we are looking for a time-independent operator E(z,y)
such that, given a state |®(t)), the probability that the
interval between y and z is empty at time ¢ is

E(z,y,t) = (|E(z,y)|2(2))- (17)
This operator is
E(x,y) =e” Jy dzv (@), (18)

The easiest way to show this consists in using the explicit
form of the projection state (| = (Oleff:: dz%(2) in Eq.
(17). Indeed, for a general state |®), we find

E(z,y) = (0]eVs” T 124z ¥(2) gy,

If we consider the state |®') = 7(21) - - - 7(2,)|®) obtained
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by adding particles in z1, 23,...,2, to the state |®) we
obtain

if z, & (y,z) Vn, 19
otherwise. (19)

(B(z,y))e = { {F@ )=

This defines the probability £(z,y) introduced above.
Moreover, we have

v =~ |gEe)| (20)

in agreement with Doering and ben-Avraham [14].
The basic commutation relation is

[E(:l), y),7r(z)] = —f(z,z,y)E(:l:, y)a (21)
where the function f is given by

1 ify<z<z
’ 22
0 otherwise. (22)

f(z,z,y) =

This commutation relation can be used to prove Eq. (19)
without any reference to the explicit form of the projec-
tion state.

We can now derive the equation of motion for £(z, y, t).
From Egs. (8) and (10) and the property (19), we have

(E(=,y)(Ho + H.))
~D(E(z,y)[¢'(z) —¢'(y)])
+/ dzdz'V(|z — Z'|){E(z, y)¥(2)¥(2")),
b
(23)

0
= (B(z,v)) =

where the domain of integration is
L={(27) ]2 ¢ (y,z), 2 € (y,2)}.

To proceed, we have to specify the interaction V(£). We
choose the following form:

_Jv fo<é<o,
vio-{s §est

and we shall eventually take the ¢ — 0 limit. For this
purpose let us define

(24)

vo=A and wvo?=x.

Taking into account the form of the domain of integration
¥, the expansion in o of Eq. (23) gives:

S (B(@,9)) = (Blz,y)(Ho + HL))
~D{E(, Y)Y (@) - ¥' @)
+3XE@ W @) + #2@)]) + 0o,

(25)

From the definition of E(z,y) [Eq. (18)], we obtain



6224

(52 + 7 ) 1B @) = ~(Ble ¥ () — W)
+HE(z,y) [ (z) + (1))
(26)
Thus in the limit
such that vo? = x = 2D,
(27)

o—0, v — 00

we recover the desired equation:

5@ ) =D (55 + 53 ) (Ble.) + 0. (28)

The particular choice x — 2D has its physical motivation
in the relation between a model on a discrete lattice and
its continuous version [24]. Moreover, our closed equation
is valid only in the limit (27), which corresponds to an
infinite pointlike coupling:

V(z—2'|) 2 2X6(z — 2'), with A =wvo — co. (29)

This fact is not surprising, considering that such a cou-
pling corresponds to an instantaneous coagulation on
contact: this is exactly the condition that was used in
all the exact solutions [8-15].

This aspect can also be nicely understood in the
renormalization-group framework (see, for example, [2]).
The limit A — oo corresponds to approaching the non-
trivial fixed point of the theory and thus to be in the
asymptotic long-time regime. As a consequence, we can
interpret the result (28), valid in the limits (27) and (29),
as an equation for the asymptotic long-time regime for
a diffusion-coagulation problem, with arbitrary reaction
rate.

IV. GENERALIZATION TO a« REACTIONS

Following the results obtained in Sec. II, about the
correspondence between the coagulation model and an o
model, we can now find the quantity corresponding to F
for the @ model and its equation of motion.

Let us define the operator

T (z,y) = e~y 229, (30)

Thus, 7 (z,y) = (T(*)(z,y)) satisfies the closed equa-
tion:

62 9?2

a
= g(e) = 4= (@) O(ad).
atT (z,y,t) D(axz +8y2>T (z,y,t) + O(c”)

(31)
To see the physical meaning of this operator, we consider

a state |®) = m(z1) - 7(2,)|0). It is then easy to show
that
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(T (2,y))e = [[ a:
i=1
(32)
_J1 if z; € (y, ),
%=V 1-a ifze (y, ).

T @) (z,y), which is relevant for the annihilation case, is
related to the probability of having an even number of
particles in the interval between y and z. For a generic
vector of the form |®) = F[r]|0), we have

T (2,y) = F[1 - f@(2)], (33)
where the function f(®) is the generalization of (22), i.e.,

(«) :{a fy<z<ue,
F(z) 0 otherwise.

Equation (31) has been solved by Doering, Burschka,
and Horsthemke [25], with appropriate boundary con-
ditions at £ = y and * = oo and the initial condition
T (z,y,0) = %(a)(w,y). The solution of this equation
is particularly simple if the system is homogeneous. From
translational invariance 7(®)(z,y,t) = 7(®)(z —y,t) and
Eq. (31) becomes

9 1 (z,t) = 2D6—2T(°’)(:v t) | (34)
ot ’ Ox2 B
with the conditions:

TE@0,8) =1, [T (c0,t)] <1,

T (2,0) = T ().
The second condition follows from the fact that 7(*) (z, y)
is a stochastic variable that takes its value in the interval

[-1,+1]. To take care of the first two boundary condi-
tions, it is judicious to define

52

(o) = "2 q(a)

t'(z,t) = BzZT (z,1t), (35)
whose equation of motion is

8 ?
1)) — = _¢(e)
' (z,t) 2D8x2t (z, 1),

at (36)
() (0,t) = t{*)(c0,t) = 0.
The solution reads
£ (a, 8) = / dz G(z, 2, 1)t (), (37)
1]

where G(z, z,t) is the Green function:

o (~ 5. 9
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We can now study the behavior of the particle density.
From Eq. (30), it follows that the (homogeneous) density
is

al®) = (5(0) = —a7 [ LT @y| @)
and then from (35):
ca(t) =a™?! / " d @) (2, ¢). (40)

Using Eq. (37) we obtain

Calt) =a™?t /000 dz erf ((SI;W) t{)(2)

- - % e e [y _ (@) (gpg1/
= a~1(2xDt) 1/2/0 g ¢ 5[1 7 (268 2)],
(41)

whose asymptotic behavior for large ¢t is

cal(t) ~ (20) "1 (20 Dt)~1/2 [1 - 73“’)(00)] . (42
This result shows that, besides the trivial dependence on
the factor (2a)~!, which follows from the rescaling ¥ —
ap, the asymptotic density amplitude depends also on
the initial value %(a)(oo). The study of this quantity for
a general initial state is a very hard problem. From (33)
and (4) we have

oo

74 (x) = exp LZ =

=1

9(») (:1:):| ) (43)

where
dp)(z) = /0 deq -- ./0 dzy, gp)(Z1,...,Tp)

and it is difficult to predict the value 75(0‘)(00), without
expliciting the g(,)’s.

Let us then consider a translational invariant state hav-
ing the following properties:

g () =c, g (r1,z2) = g(|z1 — z2]),

(44)

9p) =0, for p > 3.

Such a state can be easily built, as we shall see later.
Thus, we have

%(a)(m) = exp {—acz + 92-2—57(2)(1)} , (45)
with

9i2)(z) =2z /0”’ dz g(z) — 2/: dz z g(z).
If we define

A=2/ dz g(z) and B:/ dz zg(z),
0 0
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which are finite for short-range correlations, one sees that
in the limit £ — oo three cases have to be distinguished:

2
(1) ac— %A >0: T (00) = 0,

(2) ac— g;A <0: %(a)(oo) = (46)

2
3) ac— %A =0: 73(0‘)(00) =e B,

The case (2) is unphysical, because the particle density
must be positive. Thus the value of A is such that a4 <
2¢ for all a € [1,2], which implies A < ¢. This constraint
is a consequence of the assumption 9p) = 0 for p > 3
and B < oo. This also means that the case (3) is only
realizable for a = 2, A = c¢. From (42) it follows that
for an initial state of the type (44), we have the same
asymptotic density amplitude for all the o models with
1 < a < 2 and for the pure-annihilation case with A <
c. But in the pure-annihilation case with A = ¢, the
amplitude depends on the value of B.

‘We now show how to build a state of the form (44) and
understand its physical content. Let us take a Poissonian
state with density é

|P) — eéfdz (w(z)—l)'()),

and the state |®g) obtained by the replacement,

w(z) > w(a) |8+ 3 [dy wle+ o)), 0<p<L

(47)
The normalization (|®g) = 1 implies that

A=2/0°°dyg(y)=2(1—ﬁ)é-

The modification (47) means that we go from the state
|P), where particles are randomly distributed, to the
state |®g), where both single particles and pairs are ran-
domly distributed. The probability density that a pair
has an extension o is 35g(c). If 3 = 0 there are only
pairs in the state |®o) . A straightforward calculation
gives

1B5) = exp{(Z - ﬂ)é/dz [r(z) — 1]

+5 [ dzdy 9(z = v)r(z) - 1ir(w) - 11}~

Thus we have a state of the type (44) with density ¢ =
(2— ,B)c For B = 0, we have A = ¢. The mean extension
of a pair is

2-8B ﬁ)B

QI

= —/ do og(o) =

Our a models, with initial correlations can now be
parametrized in terms of (o, 3,5) € [1,2] % [0, 1] X [0, c0).
The asymptotic density amplitudes are universal for all
the values of the parameters, except on the line (o =
2,8 = 0,5) where the amplitude is proportional to
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(1 — e7%¢®). In this case, the asymptotic density am-
plitude tends to zero if & — 0. The physical reason is
that when & = 0, the two particles of a pair are at the
same place and immediately annihilate. This situation
cannot occur if coagulation is present, because single iso-
lated particles will remain.

It would be interesting to see how a more general ini-
tial state would affect the amplitudes. Note finally that
the relations (46), characterizing the initial state, are pre-
served by the dynamical evolution. Indeed, every evolved
state can be considered as a new initial state evolving to-
wards the same asymptotic solution.

V. CONCLUSIONS

We have studied a class of d-dimensional diffusion-
reaction models interpolating continuously between the
diffusion-coagulation and the diffusion-annihilation mod-
els. The field-theoretical approach used leads to exact
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relations between the observables of these different mod-
els. In one dimension, it was shown how correlations in
the initial state can lead to a violation of the universality
of the amplitude for the DA models.

Several extensions of the present work concerning one-
dimensional models with reversible diffusion-reaction sys-
tems, or the presence of fronts in inhomogeneous systems,
are under investigation. Moreover, one may expect to
construct “good observables” in d-dimensional systems
for which a closed equation of motion can be derived.
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